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SZECHTMAN, H. Effects of pretreatment with naloxone on behaviours induced by a small dose of apomorphine. 
PHARMACOL BIOCHEM BEHAV 24(6) 1779--1783, 1986.--The opiate antagonist, naloxone, was used to determine 
whether endogenous opioids modulate behavioural effects induced by a low dose of apomorphine. Before administering 
apomorphine (0.075 mg/kg) or saline, rats were pretreated with naloxone (1 mg/kg) or saline. Each subject received all 4 
possible treatments (saline-saline, saline-apomorphine, naloxone-saline, and naloxone-apomorphine) in random order. 
Naloxone (1) reduced the frequency and (2) altered the timing of apomorphine-induced yawning, (3) reduced the frequency 
of apomorphine-induced stretching, (4) potentiated the effect of apomorphine on delaying grooming of the body, and (5) did 
not affect the hypoactivity induced by apomorphine. Moreover, like apomorphine, naloxone itself reduced activity. 
Furthermore, naloxone and apomorphine injected together increased the latency to groom the face. These results suggest 
that in some circuits, endogenous opioids interact with dopaminergic autoregulatory mechanisms. 

Apomorphine Dopamine autoreceptors Grooming Hypoactivity Naloxone Opiates Rats 
Sedation Stretching Yawning 

WHILE the discovery of opiate receptors in regions contain- 
ing dopaminergic innervation [1, 25, 26, 37] illuminates the 
possible anatomical basis for the often observed interaction 
between opiate and dopaminergic systems, it does not ex- 
plain how opiates produce behavioural effects that sometimes 
resemble activation of dopaminergic systems (e.g., [25,31]) 
and at other times, antagonism (e.g., [8,9]). However, it has 
been suggested that it may be possible to do so [16] by taking 
into account that dopamine systems exhibit autoregulation 
[15]. That is, increased neural firing, which releases 
dopamine, leads not only to the activation of  postsynaptic 
neurons, but also to activation of compensatory mechanisms 
that inhibit dopaminergic activity. These inhibitory mech- 
anisms include neural feedback loops [11] as well as 
dopamine 'autoreceptors'  located on the dopamine neuron 
itself [5, 6, 28, 29]. Thus, depending on whether opiates (en- 
dogenous or exogenous) interact with the dopaminergic out- 
put circuits, or the dopaminergic autoregulatory mech- 
anisms, or both, either inhibitory or excitatory behavioural 
effects may predominate. 

Indeed, a number of studies point to an inhibitory effect 
of  opiates on dopaminergic output neurons [19,27]. How- 
ever, only a few behavioural experiments have addressed the 
issue of interaction between opiates and dopaminergic au- 
toregulatory mechanisms. Among these is the study by Her- 

nandez et al. [16] showing that morphine may mimic the cue 
provided by a low dose of  apomorphine, a drug that in low 
concentrations (0.1 mg/kg or less) is an agonist of  dopan~ne 
autoreceptors [32]. 

The purpose of the present study was to provide further 
evidence for a possible interaction between endogenous 
opioid systems and dopaminergic autoregulatory mech- 
anisms. The approach used involves examining whether 
blockage of  opiate receptors with naloxone alters the be- 
havioural effects induced by a low dose of apomorphine. It 
has been suggested previously that these behavioural effects, 
which include reduction in activity [9,32], as well as yawning 
and stretching [12, 17, 23, 38] result from stimulation of  
dopaminergic autoreceptors. 

METHOD 

Animals 

Subjects used in this study were 8 male Charles River 
Sprague-Dawley rats (440-550 g), housed 2 per cage in a 
colony with light on from 0700 to 1900 hr. They were well 
habituated to the testing environment and drug injections 
because of an earlier study [33] in which they experienced 7 
injections of  apomorphine (0.15-1.25 mg/kg) in the same 
apparatus as used presently. 
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FIG. 1. Effect of pretreatment with naloxone on behaviours induced 
by a small dose of apomorphine. From left to right: frequency of 
yawns, frequency of stretching, duration of inactivity, latency to 
groom the face and latency to groom the body. A symbol represents 
the same individual rat throughout the figure. Whenever the graph 
indicates less than eight symbols (the total number of animals) the 
missing values are 0 for number of yawns, and stretches, and 1800 
sec for latency to face groom, and body groom. The mean of the 
treatment is indicated by the horizontal line. Saline-saline (S), 
naloxone-saline (N), saline-apomorphine (A), naloxone-apomor- 
phine (B). 

Drugs 

Naloxone hydrochloride was dissolved in saline (1 mg/ml) 
and apomorphine hydrochloride in saline (0.15 mg/ml) plus 
0.1% ascorbic acid. Naloxone (1 mg/kg) was injected intra- 
peritoneally and apomorphine (0.075 mg/kg) was injected 
subcutaneously under the scruff of  the neck. 

Apparatus 

Each rat was tested in a low plastic dome, 9 cm high and 
27 cm in diameter,  which rested on a glass floor. A mirror, 
inclined 45 ° to it, permitted a bot tom view of the rat ' s  be- 
haviour which was recorded continuously on a video cas- 
sette recorder interfaced with a t ime-code generator. Meas- 
urements were taken during playback of  video records. 

Procedure 

Twenty minutes before the start of  testing, the rat was put 
into a holding bowl for adaptation. Five minutes before test- 
ing, it was injected with naloxone (1 mg/kg) or saline. Im- 
mediately before being transferred to the testing apparatus,  it 
received an injection of  apomorphine (0.075 mg/kg) or saline. 
Each rat received all 4 possible treatments (saline-saline, 
saline-apomorphine, naloxone-saline, and naloxone- 
apomorphine) in random order. Tests were spaced 2-3 days 
apart,  were 30 min in duration, and were conducted during 
light-on hours. 

The following 5 categories of the rat 's  behaviour were 
measured: (1) Yawning: number of  times the rat opened its 
mouth wide and the time of occurrence of  each yawn were 
noted. (2) Stretching: number of  times the rat (a) extended a 
forelimb to form a pillar-like structure, sometimes lifting the 
stretched out limb off the ground, moving it on the shoulder,  
and maximally abducting the digits of  the paw; or (b) lifted a 
hindlimb off the ground spreading out the toes in the air; or 
(c) did both of  the above. (3)Inactivi ty:  duration of time the 
rat visibly did not move any segment of its body. The dura- 
tions of the absence of  movement were measured rather than 
of the presence of movement because inactivity was more 
prominent in drugged rats and was easier to score from video 
records. Using this scoring procedure,  activity equals the 
duraton of test (i.e., 1800 sec) minus the duration of  inactiv- 
ity. (4 )Face  Grooming: and (5)Body Grooming: the latency 
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FIG. 2. Yawning following administration of saline-apomorphine 
(top) and naloxone-apomorphine (bottom). Each horizontal line is an 
individual rat; a tic represents a yawn at the indicated time. Heavy 
bars illustrate mean frequency of yawns of all rats during 3 min 
intervals. 

to the first grooming of face and body,  respectively. If  a rat 
did not groom, it was given a latency of 1800 sec (the dura- 
tion of the test). 

Statistical Analysis 

Unless noted otherwise, data were analyzed by one factor 
analyses of variance for repeated measures; comparisons 
among groups were made using Duncan's  multiple range 
test. 

RESULTS 

Compared to the control (saline-saline) condition, 
apomorphine produced a significant change in 4 of the 5 
behavioural categories examined (Fig. 1): it increased the 
frequency of  yawning (p <0.01), and stretching (p <0.05), the 
duration of inactivity (p <0.01) and delayed the onset of body 
grooming (/9<0.01). Latency to groom the face did not differ 
from the control condition. 

Pretreatment with the opiate receptor  blocker,  naloxone, 
affected the behavioural changes induced by apomorphine as 
follows (Fig. 1): (1) it reduced the frequency of  yawning 
(p<0.01) but not to the control mean (saline-saline vs. 
naloxone-apomorphine,  p<0.01);  (2) it reduced the amount 
of  stretching (,o<0.05) to a value that did not differ from 
control (p>0.05); (3) it did not alter the increase in inactivity 
(p>0.05); and (4) it produced an even greater delay in the 
onset of  body grooming (p<0.01). In addition, naloxone and 
apomorphine injected together increased the latency to 
groom the face (p<0.01). 

The only statistically significant effect of  injecting 
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FIG. 3. Frequency distribution of inter-yawn intervals following 
administration of saline-apomorphine (SAL-APO) and naloxone- 
apomorphine (NAL-APO). N is the number of inter-yawn intervals. 

naloxone-saline was an increase in inactivity compared to 
the control condition (p<0.05; Fig. 1). 

Figure 2 and Fig. 3 illustrate the temporal characteristics 
of yawning induced by apomorphine and their alteration by 
pretreatment with naloxone. Four points are especially 
noteworthy: 

First, inspection of data for each individual subject 
suggests that yawning came in fits; i.e., there were several 
yawns with relatively short inter-yawn intervals followed by 
a relatively long period of quiescence and then another series 
of yawns (Fig. 2). 

Second, some yawns followed each other almost im- 
mediately, with inter-yawn intervals as short as 5 sec (Fig. 2 
and Fig. 3). 

Third, aside from reducing the frequency of yawns, pre- 
treatment with naloxone altered the distribution of inter- 
yawn intervals, reducing the relative frequency of shorter 
inter-yawn intervals (Fig. 3; D=0.187; p<0.05, 
Kolmogorov-Smirnov test). 

Finally, although pretreatment with naloxone delayed the 
onset of yawning [latency to first yawn (means+_SEM) for 
saline-apomorphine was 456---48 sec vs. 867___181 for 
naloxone-apomorphine, p<0.01, paired t-test], their time 
course appeared similar with both treatments, exhibiting a 
peak at approximately 12 min after injection of apomorphine 
(Fig. 2) 

To examine possible links between the 5 dependent 
measures used in this study, correlation coefficients were 
calculated. The only statistically significant correlation was 
between the frequency of yawns and duration of inactivity 
for the saline-apomorphine treatment (r=-0.783; p<0.05). 

D I S C U S S I O N  

Present results show that pretreatment with the opiate 
receptors blocker, naloxone, attenuates apomorphine- 
induced yawning, and stretching, but does not alter hypoac- 
tivity. To the extent that apomorphine may induce these 
behavioural effects by stimulating dopamine autoreceptors 
[12, 17, 23, 38], the findings suggest that at least in some 
circuits, opiates interact with dopaminergic autoregulatory 
mechanisms [7, 10, 14, 16, 19]. Furthermore, since naloxone 
reduces also the relative frequency of short inter-yawn inter- 
vals, this interaction involves not only the probability of re- 
sponding but also the modulation of the timing of yawns. 

As both apomorphine and naloxone reduce activity, it is 
not possible to ascertain from the present data whether there 
is an opiate-dopamine interaction in the induction of 
hypoactivity by apomorphine. 

The finding that naloxone potentiates apomorphine- 
induced delay in the onset of bodily grooming suggests an 
opiate-dopamine interaction as well. However, while the ob- 
servation that a low dose of apomorphine delays the onset of 
grooming is a novel finding, this effect is probably mediated 
by receptors different than those mediating yawning, stretch- 
ing, or hypoactivity. Previous research had indicated that 
high (post-synaptic) doses of apomorphine delay the onset of 
grooming [35]. Therefore, only a monophasic effect of 
apomorphine on the inhibition of grooming is present, a phe- 
nomenon similar to apomorphine's effect on the release of 
prolactin [1,36]. 

In addition to providing evidence for opiate-dopamine in- 
teraction, the present results reveal that yawning induced by 
apomorphine not only seems to have unique temporal char- 
acteristics, but also that they are modified by pretreatment 
with naloxone. These observations raise the possibility that 
the temporal characteristics of yawning may be unique in 
different pathological states. This suggestion is reinforced by 
the observation of Lehmann [21] who noted that schizo- 
phrenics are less likely to yawn but that " if  yawning oc- 
curred in schizophrenic patients, it usually appeared in a 
peculiar, short, superficial manner and was not repeated, 
while the yawning of a patient with structural brain lesion 
tended to be frequent, deep, and prolonged." 

Selective inbreeding can result in high frequencies of 
yawning in rats [18]. However, since the rats used in the 
present study came from a randomly bred population, ge- 
netic inbreeding cannot account for the much higher inci- 
dence of yawns found here than reported in the literature (25 
in 30 min vs. 14 in 25 min after 0.05 mg/kg of apomorphine 
[29], 10 in 20 min after 0.08 mg/kg [4], or 17 in 60 min after 0.1 
mg/kg of apomorphine [12]). The three most likely reasons 
for this discrepancy are: (1) Considering that yawning comes 
in fits, with some yawns following each other at 5-10 sec 
intervals, previous studies may have underestimated their 
true frequency because the rats' behaviour was monitored in 
real time and not on videotape. (2) The frequency of yawns 
in control rats increases and reaches a plateau after several 
exposures to the testing apparatus [20]. While in the present 
study subjects were well habituated to the testing cage, and 
therefore very likely to exhibit yawning, there is no indica- 
tion that animals were adapted to the test environment in 
other studies. (3) Since rats used here were not drug naive, 
previous exposure to high doses of apomorphine may induce 
increased sensitivity to low doses of the drug. Although this 
explanation is methodologically possible, the literature 
suggests that just the opposite is more likely to happen. That 
is, pretreatment with a high (or low) dose of apomorphine 
reduces the behavioural effectiveness of a low dose of the 
drug [3,22] while pretreatment with a low dose does not alter 
responsiveness to a high one [ 13]. Future studies can resolve 
which of these alternatives is correct. 

In conclusion, the present findings provide support for 
the hypothesis that endogenous opioid systems interact with 
dopaminergic autoregulatory mechanisms. Furthermore, the 
results show that naloxone modifies not only apomorphine- 
induced yawning and stretching, but also the temporal char- 
acteristics of yawning raising the possibility that this feature 
of the behaviour may prove useful as a marker of some 
pathological states. 
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